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Or:

Thoughts on building a SIP 
network with Open Source tools 
as told from the perspective of 
an Asterisk guy who likes to 
employ JavaScript / Ruby / 
Python / Java / Go / Rust

(non-C) developers
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Goals

 Be able to scale out, then up

 Reasonable redundancy everywhere

 All applications are cattle, not pets

 Minimize the necessity of specialist monolith 
knowledge
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Components

Kamailio Asterisk Service

Scalability Great Meh Good*

API Meh Good Good*

Required 
Knowledge

Bad Bad Good
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General System Architecture

Kamailio 1
Stateful

Kamailio 2
Stateful

Asterisk 1

Asterisk 2

Asterisk n

AppServer 1

AppServer 2

Phone Media Servers App Logic

Private NetworkRegistrar/Routing

Kamailio 1
Stateful

Kamailio 2
Stateful

Provider Proxies

SIP Provider

AppServer n

DB



6Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Four General Problems

 Inbound SIP Registrations
– How do phones find each other?
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Handling REGISTER requests

 Goal 1: Use Kamailio
– It scales better
– Asterisk does not cluster registration state

 Goal 2: We don't want to:
– Associate a SIP registration (phone location) to an 

Asterisk instance
– Send all SIP registrations to all Asterisk instances



8Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Handling REGISTER requests

 Kamailio is easy
– Save the location using the registrar module
– Fork a received REGISTER request to the other 

Kamailio instances so they can update their in-
memory information

 Asterisk: Two Approaches
– Use a view on the kamailio DB and look up location 

information by AoR (dial by AoR)
– Use a “sidecar service” to expose location 

information (dial by URI)
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Handling REGISTER requests: View
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Handling REGISTER requests: View

 For each Asterisk instance:
– Configure an ODBC connection to the Kamailio database
– Create an Asterisk ps_aors realtime/ODBC mapping to the Kamailio 

database

ps_aors => odbc,kamailio

– Configure sorcery to map aors to the ps_aors object from the realtime 
connection

aor = realtime,ps_aors

 Pros: Can Dial by AoR from everywhere

; Assumes our AoR is named the same as the endpoint alice
same => n,Dial(PJSIP/alice)

 Cons: Creates a non-intuitive link between Asterisk and Kamailio
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Handling REGISTER requests: Sidecar
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Handling REGISTER requests: Sidecar

 Write a “sidecar” service to Kamailio
– Expose a REST API that provides the location of a phone
– Get the location of the phone from the AppServer

 Error return codes can indicate the lack of a registered 
contact

– Dial by URI:

const uri = getContactForEndpoint(alice);
const dialstring = `PJSIP/alice/${uri}`;

 Pros: Relationships are explicit in code; failures are explicit

 Cons: Have to write a service; not easily used from Asterisk 
dialplan
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Four General Problems

 Inbound SIP Registrations
– How do phones find each other?

 Routing/Distribution
– How do we get the right SIP request to the right 

media server?
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Routing/Distribution

 Option 1: Tie a customer domain to an Asterisk 
instance
– Pros: Easy – all calls end up on the same media 

server
– Cons: Doesn't scale, inefficient

 Option 2: Just round-robin using Kamailio 
dispatcher
– Pros: Efficient, makes use of resources, tolerant to 

failure
– Cons: Pushes the burden onto Asterisk and the 

application logic to get calls on the right servers



15Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Four General Problems

 Inbound SIP Registrations
– How do phones find each other?

 Routing/Distribution
– How do we get the right SIP request to the right 

media server?

 Applications
– How do we quickly iterate on application features to 

serve the never ending demands of our customers?
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Applications: Things Get Tricky

 All calls will be arriving at random Asterisk instances
– Customer information cannot 'live' or be 'owned' by 

Asterisk
 Endpoint definition
 Prompts
 Recordings

– May have to move a channel to another Asterisk 
instance for some application specific scenarios

 Keep the dialplan simple!
– Cannot scale a customer specific dialplan
– Cannot maintain a complex dialplan
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Applications: Things Get Tricky

 Phase 1: Use AGI as a Dispatcher
– Easiest to get started
– Load balances with hagi protocol
– Can selectively replace dialplan applications with ARI
– Pros: Easy to get started, can choose when to replace things
– Cons: Requires special DNS entries

 Phase 2: Use ARI with a proxy/middleware layer
– General idea: terminate websockets locally and pass event 

messages over a message queue
– Provide a facade that allows a rules engine to claim 'ownership' 

over some channel based on the application it entered
– Pros: Fully decoupled
– Cons: Lots of custom dev work
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Handling REGISTER requests: Sidecar
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Applications: Things Get Tricky

 Endpoints
– Map the PJSIP objects to a realtime backend
– Use a cache!

endpoint/cache = memory_cache,
                 maximum_object=1024,
                 object_lifetime_maximum=3600
endpoint = realtime,ps_endpoints

 Prompts
– Create a REST service that hosts custom sound files for 

customers
– Use remote URI playback to play the media

 Will temporarily cache locally on each Asterisk instances



20Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Applications: Things Get Tricky

 Recordings
– Use ARI to manipulate recordings
– StoredRecording object exposes a REST route to retrieve the 

media from the Asterisk instances

 Moving Channels
– Sometimes a channel needs to get co-located on the same 

Asterisk instance as an already existing channel
 Multi-party conferences
 Call Queues

– Use the redirect ARI command
 New request URI must contain information that the 

application(s) can use logically (such as a token)

sip:{stateTokenId}@{correctAsteriskInstanceIP}
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Four General Problems

 Inbound SIP Registrations
– How do phones find each other?

 Routing/Distribution
– How do we get the right SIP request to the right 

media server?

 Applications
– How do we quickly iterate on application features to 

serve the never ending demands of our customers?

 Subscriptions
– How do we make blinky lights flash?
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Handling Subscriptions

 General Approach
– Use Kamailio as the Subscription Server

 For the same reason as it makes a good registrar
– Use Asterisk to generate state notifications

 PUBLISH to the Kamailio instances
 Kamailio will NOTIFY subscribed User Agents

 Kamailio is easy
– Handle SUBSCRIBE requests using presence module 

in a similar fashion to REGISTER requests
– Fork received SUBSCRIBE requests to other instances 

in the pool to have them update in-memory information
– Handle PUBLISH requests in the standard fashion
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Handling Subscriptions

 Asterisk: PUBLISH to the Kamailio cluster
– Use auto-hints to generate hints intelligently when a 

device state change occurs
– Define an outbound publish to the Kamailio cluster

 Use DNS SRV to round-robin across the cluster

[test-esc]
type=outbound-publish
server_uri=sip:kamailio-instances@mydomain.com
from_uri=sip:asterisk_ip
event=dialog
multi_user=yes
@body=application/dialog-info+xml

mailto:kamailio-instances@mydomain.com
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Questions

?



25Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Useful Links

 PJSIP Realtime
https://wiki.asterisk.org/wiki/display/AST/Setting+up
+PJSIP+Realtime

 PJSIP Dialing
https://wiki.asterisk.org/wiki/display/AST/Dialing+PJ
SIP+Channels

 Sorcery Caching
https://wiki.asterisk.org/wiki/display/AST/Sorcery+Cac
hing

 Configuring Asterisk for PUBLISH to Kamailio
https://wiki.asterisk.org/wiki/display/AST/Configurin
g+res_pjsip+for+Presence+Subscriptions

 ARI Examples and Tutorials
https://wiki.asterisk.org/wiki/pages/viewpage.action
?pageId=29395573

https://wiki.asterisk.org/wiki/display/AST/Setting+up+PJSIP+Realtime
https://wiki.asterisk.org/wiki/display/AST/Setting+up+PJSIP+Realtime
https://wiki.asterisk.org/wiki/display/AST/Dialing+PJSIP+Channels
https://wiki.asterisk.org/wiki/display/AST/Dialing+PJSIP+Channels
https://wiki.asterisk.org/wiki/display/AST/Sorcery+Caching
https://wiki.asterisk.org/wiki/display/AST/Sorcery+Caching
https://wiki.asterisk.org/wiki/display/AST/Configuring+res_pjsip+for+Presence+Subscriptions
https://wiki.asterisk.org/wiki/display/AST/Configuring+res_pjsip+for+Presence+Subscriptions
https://wiki.asterisk.org/wiki/pages/viewpage.action?pageId=29395573
https://wiki.asterisk.org/wiki/pages/viewpage.action?pageId=29395573
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