
Scalable Asterisk Servers in a
Large SIP Infrastructure

Matt Jordan
@mattcjordan

2Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Or:

Thoughts on building a SIP
network with Open Source tools
as told from the perspective of
an Asterisk guy who likes to
employ JavaScript / Ruby /
Python / Java / Go / Rust

(non-C) developers

3Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Goals

 Be able to scale out, then up

 Reasonable redundancy everywhere

 All applications are cattle, not pets

 Minimize the necessity of specialist monolith
knowledge

4Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Components

Kamailio Asterisk Service

Scalability Great Meh Good*

API Meh Good Good*

Required
Knowledge

Bad Bad Good

5Creative Innovation – Customer Satisfaction – Continual Quality Improvement

General System Architecture

Kamailio 1
Stateful

Kamailio 2
Stateful

Asterisk 1

Asterisk 2

Asterisk n

AppServer 1

AppServer 2

Phone Media Servers App Logic

Private NetworkRegistrar/Routing

Kamailio 1
Stateful

Kamailio 2
Stateful

Provider Proxies

SIP Provider

AppServer n

DB

6Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Four General Problems

 Inbound SIP Registrations
– How do phones find each other?

7Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Handling REGISTER requests

 Goal 1: Use Kamailio
– It scales better
– Asterisk does not cluster registration state

 Goal 2: We don't want to:
– Associate a SIP registration (phone location) to an

Asterisk instance
– Send all SIP registrations to all Asterisk instances

8Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Handling REGISTER requests

 Kamailio is easy
– Save the location using the registrar module
– Fork a received REGISTER request to the other

Kamailio instances so they can update their in-
memory information

 Asterisk: Two Approaches
– Use a view on the kamailio DB and look up location

information by AoR (dial by AoR)
– Use a “sidecar service” to expose location

information (dial by URI)

9Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Handling REGISTER requests: View

Kamailio 1
Stateful

Kamailio 2
Stateful

Asterisk 1

Asterisk 2

Asterisk n

AppServer 1

AppServer 2Phone

Media Servers App Logic

Private Network

Registrar/Routing AppServer n

DB

kamailio:location
kamailio:ps_aors (view)

asterisk:ps_*

10Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Handling REGISTER requests: View

 For each Asterisk instance:
– Configure an ODBC connection to the Kamailio database
– Create an Asterisk ps_aors realtime/ODBC mapping to the Kamailio

database

ps_aors => odbc,kamailio

– Configure sorcery to map aors to the ps_aors object from the realtime
connection

aor = realtime,ps_aors

 Pros: Can Dial by AoR from everywhere

; Assumes our AoR is named the same as the endpoint alice
same => n,Dial(PJSIP/alice)

 Cons: Creates a non-intuitive link between Asterisk and Kamailio

11Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Handling REGISTER requests: Sidecar

Kamailio 1
Stateful

Kamailio 2
Stateful

Asterisk 1

Asterisk 2

Asterisk n

AppServer 1

AppServer 2Phone

Media Servers App Logic

Private Network

Registrar/Routing AppServer n

DB

Kamailio
Sidecar

12Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Handling REGISTER requests: Sidecar

 Write a “sidecar” service to Kamailio
– Expose a REST API that provides the location of a phone
– Get the location of the phone from the AppServer

 Error return codes can indicate the lack of a registered
contact

– Dial by URI:

const uri = getContactForEndpoint(alice);
const dialstring = `PJSIP/alice/${uri}`;

 Pros: Relationships are explicit in code; failures are explicit

 Cons: Have to write a service; not easily used from Asterisk
dialplan

13Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Four General Problems

 Inbound SIP Registrations
– How do phones find each other?

 Routing/Distribution
– How do we get the right SIP request to the right

media server?

14Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Routing/Distribution

 Option 1: Tie a customer domain to an Asterisk
instance
– Pros: Easy – all calls end up on the same media

server
– Cons: Doesn't scale, inefficient

 Option 2: Just round-robin using Kamailio
dispatcher
– Pros: Efficient, makes use of resources, tolerant to

failure
– Cons: Pushes the burden onto Asterisk and the

application logic to get calls on the right servers

15Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Four General Problems

 Inbound SIP Registrations
– How do phones find each other?

 Routing/Distribution
– How do we get the right SIP request to the right

media server?

 Applications
– How do we quickly iterate on application features to

serve the never ending demands of our customers?

16Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Applications: Things Get Tricky

 All calls will be arriving at random Asterisk instances
– Customer information cannot 'live' or be 'owned' by

Asterisk
 Endpoint definition
 Prompts
 Recordings

– May have to move a channel to another Asterisk
instance for some application specific scenarios

 Keep the dialplan simple!
– Cannot scale a customer specific dialplan
– Cannot maintain a complex dialplan

17Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Applications: Things Get Tricky

 Phase 1: Use AGI as a Dispatcher
– Easiest to get started
– Load balances with hagi protocol
– Can selectively replace dialplan applications with ARI
– Pros: Easy to get started, can choose when to replace things
– Cons: Requires special DNS entries

 Phase 2: Use ARI with a proxy/middleware layer
– General idea: terminate websockets locally and pass event

messages over a message queue
– Provide a facade that allows a rules engine to claim 'ownership'

over some channel based on the application it entered
– Pros: Fully decoupled
– Cons: Lots of custom dev work

18Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Handling REGISTER requests: Sidecar

Kamailio 1
Stateful

Kamailio 2
Stateful

Asterisk 1

Asterisk 2

Asterisk n

AppServer 1

AppServer 2Phone

Media Servers App Logic

Private Network

Registrar/Routing AppServer n

DB

Message Bus/Queue

19Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Applications: Things Get Tricky

 Endpoints
– Map the PJSIP objects to a realtime backend
– Use a cache!

endpoint/cache = memory_cache,
 maximum_object=1024,
 object_lifetime_maximum=3600
endpoint = realtime,ps_endpoints

 Prompts
– Create a REST service that hosts custom sound files for

customers
– Use remote URI playback to play the media

 Will temporarily cache locally on each Asterisk instances

20Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Applications: Things Get Tricky

 Recordings
– Use ARI to manipulate recordings
– StoredRecording object exposes a REST route to retrieve the

media from the Asterisk instances

 Moving Channels
– Sometimes a channel needs to get co-located on the same

Asterisk instance as an already existing channel
 Multi-party conferences
 Call Queues

– Use the redirect ARI command
 New request URI must contain information that the

application(s) can use logically (such as a token)

sip:{stateTokenId}@{correctAsteriskInstanceIP}

21Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Four General Problems

 Inbound SIP Registrations
– How do phones find each other?

 Routing/Distribution
– How do we get the right SIP request to the right

media server?

 Applications
– How do we quickly iterate on application features to

serve the never ending demands of our customers?

 Subscriptions
– How do we make blinky lights flash?

22Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Handling Subscriptions

 General Approach
– Use Kamailio as the Subscription Server

 For the same reason as it makes a good registrar
– Use Asterisk to generate state notifications

 PUBLISH to the Kamailio instances
 Kamailio will NOTIFY subscribed User Agents

 Kamailio is easy
– Handle SUBSCRIBE requests using presence module

in a similar fashion to REGISTER requests
– Fork received SUBSCRIBE requests to other instances

in the pool to have them update in-memory information
– Handle PUBLISH requests in the standard fashion

23Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Handling Subscriptions

 Asterisk: PUBLISH to the Kamailio cluster
– Use auto-hints to generate hints intelligently when a

device state change occurs
– Define an outbound publish to the Kamailio cluster

 Use DNS SRV to round-robin across the cluster

[test-esc]
type=outbound-publish
server_uri=sip:kamailio-instances@mydomain.com
from_uri=sip:asterisk_ip
event=dialog
multi_user=yes
@body=application/dialog-info+xml

mailto:kamailio-instances@mydomain.com

24Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Questions

?

25Creative Innovation – Customer Satisfaction – Continual Quality Improvement

Useful Links

 PJSIP Realtime
https://wiki.asterisk.org/wiki/display/AST/Setting+up
+PJSIP+Realtime

 PJSIP Dialing
https://wiki.asterisk.org/wiki/display/AST/Dialing+PJ
SIP+Channels

 Sorcery Caching
https://wiki.asterisk.org/wiki/display/AST/Sorcery+Cac
hing

 Configuring Asterisk for PUBLISH to Kamailio
https://wiki.asterisk.org/wiki/display/AST/Configurin
g+res_pjsip+for+Presence+Subscriptions

 ARI Examples and Tutorials
https://wiki.asterisk.org/wiki/pages/viewpage.action
?pageId=29395573

https://wiki.asterisk.org/wiki/display/AST/Setting+up+PJSIP+Realtime
https://wiki.asterisk.org/wiki/display/AST/Setting+up+PJSIP+Realtime
https://wiki.asterisk.org/wiki/display/AST/Dialing+PJSIP+Channels
https://wiki.asterisk.org/wiki/display/AST/Dialing+PJSIP+Channels
https://wiki.asterisk.org/wiki/display/AST/Sorcery+Caching
https://wiki.asterisk.org/wiki/display/AST/Sorcery+Caching
https://wiki.asterisk.org/wiki/display/AST/Configuring+res_pjsip+for+Presence+Subscriptions
https://wiki.asterisk.org/wiki/display/AST/Configuring+res_pjsip+for+Presence+Subscriptions
https://wiki.asterisk.org/wiki/pages/viewpage.action?pageId=29395573
https://wiki.asterisk.org/wiki/pages/viewpage.action?pageId=29395573

	Presentation title goes here
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25

